95 research outputs found

    Combined Intra- and Inter-domain Traffic Engineering using Hot-Potato Aware Link Weights Optimization

    Full text link
    A well-known approach to intradomain traffic engineering consists in finding the set of link weights that minimizes a network-wide objective function for a given intradomain traffic matrix. This approach is inadequate because it ignores a potential impact on interdomain routing. Indeed, the resulting set of link weights may trigger BGP to change the BGP next hop for some destination prefixes, to enforce hot-potato routing policies. In turn, this results in changes in the intradomain traffic matrix that have not been anticipated by the link weights optimizer, possibly leading to degraded network performance. We propose a BGP-aware link weights optimization method that takes these effects into account, and even turns them into an advantage. This method uses the interdomain traffic matrix and other available BGP data, to extend the intradomain topology with external virtual nodes and links, on which all the well-tuned heuristics of a classical link weights optimizer can be applied. A key innovative asset of our method is its ability to also optimize the traffic on the interdomain peering links. We show, using an operational network as a case study, that our approach does so efficiently at almost no extra computational cost.Comment: 12 pages, Short version to be published in ACM SIGMETRICS 2008, International Conference on Measurement and Modeling of Computer Systems, June 2-6, 2008, Annapolis, Maryland, US

    A scalable heuristic for hybrid IGP/MPLS traffic engineering - Case study on an operational network

    Full text link
    peer reviewedIn current IP networks, a classical way to achieve traffic engineering is to optimise the link metrics. This operation cannot be done too often and can affect the route of a lot of traffic. Multiprotocol Label Switching (MPLS) opens new possibilities to address the limitations of IP systems concerning traffic engineering thanks to explicit label-switched paths (LSPs). This paper proposes a new method based on simulated annealing meta-heuristic to compute a set of LSPs that optimise a given operational objective. The hybrid IGP/MPLS approach takes advantage of both IP and MPLS technologies and provides a flexible method to traffic engineer a network on a day to day basis. We illustrate the capabilities of our method with some simulations and a comparison with other techniques on an existing operational network. The results obtained by setting up a small number of LSPs are nearly optimal and better than by engineering the IGP weights. Moreover, although it could be combined with a static setting of the latter, SAMTE alone gives already the same results as this combination in much less CPU time, which thus allows an administrator to keep its initial and meaningful IGP metrics in his network.DGTRE TOTE

    Twin RNA Polymerase–Associated Proteins Control Virulence Gene Expression in Francisella tularensis

    Get PDF
    The MglA protein is the only known regulator of virulence gene expression in Francisella tularensis, yet it is unclear how it functions. F. tularensis also contains an MglA-like protein called SspA. Here, we show that MglA and SspA cooperate with one another to control virulence gene expression in F. tularensis. Using a directed proteomic approach, we show that both MglA and SspA associate with RNA polymerase (RNAP) in F. tularensis, and that SspA is required for MglA to associate with RNAP. Furthermore, bacterial two-hybrid and biochemical assays indicate that MglA and SspA interact with one another directly. Finally, through genome-wide expression analyses, we demonstrate that MglA and SspA regulate the same set of genes. Our results suggest that a complex involving both MglA and SspA associates with RNAP to positively control virulence gene expression in F. tularensis. The F. tularensis genome is unusual in that it contains two genes encoding different α subunits of RNAP, and we show here that these two α subunits are incorporated into RNAP. Thus, as well as identifying SspA as a second critical regulator of virulence gene expression in F. tularensis, our findings provide a framework for understanding the mechanistic basis for virulence gene control in a bacterium whose transcription apparatus is unique

    Review conclusions by Ernst and Canter regarding spinal manipulation refuted

    Get PDF
    In the April 2006 issue of the Journal of Royal Society of Medicine, Ernst and Canter authored a review of the most recent systematic reviews on the effectiveness of spinal manipulation for any condition. The authors concluded that, except for back pain, spinal manipulation is not an effective intervention for any condition and, because of potential side effects, cannot be recommended for use at all in clinical practice. Based on a critical appraisal of their review, the authors of this commentary seriously challenge the conclusions by Ernst and Canter, who did not adhere to standard systematic review methodology, thus threatening the validity of their conclusions. There was no systematic assessment of the literature pertaining to the hazards of manipulation, including comparison to other therapies. Hence, their claim that the risks of manipulation outweigh the benefits, and thus spinal manipulation cannot be recommended as treatment for any condition, was not supported by the data analyzed. Their conclusions are misleading and not based on evidence that allow discrediting of a large body of professionals using spinal manipulation

    Fluphenazine decanoate (depot) and enanthate for schizophrenia

    Get PDF

    Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    Get PDF
    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions
    corecore